

Ethyne
(Acetylene)

Molecular Orbital Theory approach to bonding: Just add the individual orbital wave functions:

$$
\begin{aligned}
& \Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}}+\Psi_{\mathrm{C} 2 \mathrm{py}}+\Psi_{\mathrm{C} 2 \mathrm{pz}}+\Psi_{\mathrm{C} 1 \mathrm{~s}} \\
& +\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}}+\Psi_{\mathrm{C} 2 \mathrm{py}}+\Psi_{\mathrm{C} 2 \mathrm{pz}}
\end{aligned}
$$

Valence Bond Theory approach to bonding: Hybridize the atomic orbitals on atoms first, then look for overlap with remaining ofbital wave functions:

Line angle drawings \rightarrow Ignore all H
 pairs \rightarrow "zigzag" lone not bents
\rightarrow C atoms are assumed to be where each bond ends if not label

$$
\rightarrow \text { All non-C }\left(N, O, F, C l, B_{0}, I\right.
$$

atoms are shown
P, S etc.)
\rightarrow All H atoms directly bonded to non-C atoms are shown

Where we are:
6 bonds \rightarrow Best thought of as overlap of hybridized orbitals (or Is on H atoms)

2 electrons per 6 bond \rightarrow IGNORE antibonding orbitals when considering 6 bonding in stable molecules.

Ethane

Molecular Orbital Theory approach to bonding: Just add the individual orbital wave functions:

$$
\begin{aligned}
& \Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}} \\
& +\Psi_{\mathrm{C} 2 \mathrm{py}}+\Psi_{\mathrm{C} 2 \mathrm{pz}}+\Psi_{\mathrm{C} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}}+\Psi_{\mathrm{C} 2 \mathrm{py}}+\Psi_{\mathrm{C} 2 \mathrm{pz}}
\end{aligned}
$$

Valence Bond Theory approach to bonding: Hybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave functions:

π bonds \rightarrow For cases in π bonds between only 2 atoms

1) Overlap of unhybridized $2 p$ orbitals \rightarrow atoms must be $s p^{2}$ or $s p$
2) 2 electrons per is bond
3) We ignore antibonding orbitals when considering bonding and structure
HOWEVER \rightarrow is bonds can extend over more than 2 atoms \rightarrow described by molecular orbital
NOT consistent with Lewis theory \rightarrow these extended \approx bonding structures \rightarrow this orbitals still only is why we have cutin 2 electors contributing structures!!

Ethene
(Ethylene)

Molecular Orbital Theory approach to bonding: Just add the individual orbital wave functions:

$$
\begin{aligned}
& \Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}}+\Psi_{\mathrm{C} 2 \mathrm{py}}+\Psi_{\mathrm{C} 2 \mathrm{pz}} \\
& +\Psi_{\mathrm{C} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}}+\Psi_{\mathrm{C} 2 \mathrm{py}}+\Psi_{\mathrm{C} 2 \mathrm{pz}}
\end{aligned}
$$

Valence Bond Theory approach to bonding: Hybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave functions:

Molecular Orbital Theory
\rightarrow To quantify bonding in molecules we simply add all of the atomic orbital) wave functions in the molecule

1) This creates as many new molecular orbitals as there are component orbitals being added.
2) Each molecular orbital extends over the ENTIRE molecule
3) Each new molecular orbital contains up to the electron desity equal to 2 electrons

$$
\Rightarrow \text { NEVER MORE }
$$

What this looks like $\rightarrow 3$ atoms overlapping $2 p$ orbitals

Carboxylate anion
common situation, and the one many resonance contributing structures describe, occurs when three 2 p orbitals combine on adjagent atoms. A good example is the carboxylate anion. When three adjacent $2 p$ orbitals interact (we add the three $2 p$ orbital wave functions $\Psi_{\mathrm{C} 2 \mathrm{pz}}+\Psi_{\mathrm{O} 2 \mathrm{pz}}+\Psi_{\mathrm{O} 2 \mathrm{pz}}$), three new molecular orbitals are produced; a low energy bonding "pi-way", a nonbonding orbital and an antibonding orbital as shown below. This pattern of three molecular orbitals is generally the same whenever three $2 p$ orbitals interact even if there are different atoms involved, for example the enolate ion or allyl cation. There are four electrons in the pi system of the carboxylate anion, (you can see this by looking at either of the contributing structures; two electrons from the pi bond and two from the third lone pair on the negatively charge O atom). Note the non-bonding orbital contains the electron density of two electrons that are paired, do NOT think of it as having one upaired electron on each O atom. I know, weird, but remember it is best to think of bonding electrons as waves, not particles. Note the electron density on only the O atoms of the non-bonding orbital explains why the negative charge is localized on the O atoms in the carboxylate anion.

Antibonding orbital

Non-bonding orbital
 " π-way" orbital

Molecular Orbital Theory approach to bonding: Just add the individual orbital wave functions:

$$
\begin{aligned}
& \Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}}+\Psi_{\mathrm{C} 2 \mathrm{py}}+\Psi_{\mathrm{C} 2 \mathrm{pz}}+\Psi_{\mathrm{O} 1 \mathrm{~s}}+\Psi_{\mathrm{O} 2 \mathrm{~s}}+ \\
& \Psi_{\mathrm{O} 2 \mathrm{px}}+\Psi_{\mathrm{O} 2 \mathrm{py}}+\Psi_{\mathrm{O} 2 \mathrm{pz}}+\Psi_{\mathrm{O} 1 \mathrm{~s}}+\Psi_{\mathrm{O} 2 \mathrm{~s}}+\Psi_{\mathrm{O} 2 \mathrm{px}}+\Psi_{\mathrm{O} 2 \mathrm{py}}+\Psi_{\mathrm{O} 2 \mathrm{pz}}
\end{aligned}
$$

Valence Bond Theory approach to bonding: Hybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave functions:

$$
\begin{aligned}
& \Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 1 \mathrm{~s}}+\left(\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}}+\Psi_{\mathrm{C} 2 \mathrm{py}}\right)+\Psi_{\mathrm{C} 2 \mathrm{pz}}+\Psi_{\mathrm{O} 1 \mathrm{~s}}+\left(\Psi_{\mathrm{O} 2 \mathrm{~s}}+\right. \\
& \left.\Psi_{\mathrm{O} 2 \mathrm{px}}+\Psi_{\mathrm{O} 2 \mathrm{py}}\right)+\Psi_{\mathrm{O} 2 \mathrm{pz}}+\Psi_{\mathrm{O} 1 \mathrm{~s}}+\left(\Psi_{\mathrm{O} 2 \mathrm{~s}}+\Psi_{\mathrm{O} 2 \mathrm{px}}+\Psi_{\mathrm{O} 2 \mathrm{py}}\right)+\Psi_{\mathrm{O} 2 \mathrm{pz}}
\end{aligned}
$$

Sigma (σ) bonding - overlap of hybridized orbitals

6
π-way bonding - overlap of 3 adjacent unhybridized $2 p$ orbitals

Molecular Orbital Theory approach to bonding: Just add the individual orbital wave functions:

Valence Bond Theory approach to bonding: Hybridize the atomic orbitals on atoms first, then look for overlap with remaining orbital wave functions:
$\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{H} 1 \mathrm{~s}}+\Psi_{\mathrm{C} 1 \mathrm{~s}}+\left(\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}}+\Psi_{\mathrm{C} 2 \mathrm{py}}\right)+\Psi_{\mathrm{C} 2 \mathrm{pz}}+\Psi_{\mathrm{C} 1 \mathrm{~s}}+$ $\left(\Psi_{\mathrm{C} 2 \mathrm{~s}}+\Psi_{\mathrm{C} 2 \mathrm{px}}+\Psi_{\mathrm{C} 2 \mathrm{py}}\right)+\Psi_{\mathrm{C} 2 \mathrm{pz}}+\Psi_{\mathrm{O} 1 \mathrm{~s}}+\left(\Psi_{\mathrm{O} 2 \mathrm{~s}}+\Psi_{\mathrm{O} 2 \mathrm{px}}+\Psi_{\mathrm{O} 2 \mathrm{py}}\right)+$ $\Psi_{\text {O2pz }}$

Sigma (σ) bonding - overlap of hybridized orbitals
π-way bonding - overlap of 3 adjacent unhybridized 2 p orbitals

What have we learned?

Major
Why? (but still important)
\rightarrow This anion is more stable then you might think

1) Delocalization of a charge is stabilizing (Golden Rule \#5)
The e is debocaliz-1 on both O and C atoms
2) Delocalization of π electron density over a larger area is stabilizing
(Golden Rule \#7)
Epic structural considerations:
3) There is partial double bond character between all Three apus of the π way The $C-r$ binal
cannot rotate
4) All aton s of the ir way MUST contribute a 2_{ρ} orbital \rightarrow meas they are all $s y^{2}$ hybridized

The curious case of amide contributing structures: All three are important

Why are B and C worth considering?

1) Golden Rules of Chemistry $\# 5$ and $\# 7$
2) Quantum Mechanics (that explain Golden Rules of Chemistry \#5 and \#7)

Survival skill in OCher
\rightarrow Identify hybridization state of atoms in molecules

1) $s p^{3} \rightarrow$ all sigma bonds and lone pairs
2) $s p^{2} \rightarrow$ one pi bond and 3 sigma bonds/lone pairs
3) $s \rho \rightarrow$ two pi bonds and 2 sigma bonds/lone pairs
$\Rightarrow A n$ aton counts as having Ge Ty bond if $A N Y$ significant contributing structure has a pi bond to the atom \rightarrow part of a "N゙ away"

